读书成神豪

第252章 浅度学习

《自然》啊~

世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一。

首版於1869年11月4日,到现在(2015年)传承都快一百五十年了~

而且在今天大多数科学期刊都专一于一个特殊的领域不同,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》)依然发表来自很多科学领域的一手研究论文的期刊。

在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。

尽管影响因子的评价不完全客观,但40+的影响因子可见一斑其影响力了~

尽管脑海中想了很多,但章杉还是不能完全理解在这上面发文的概念~

就在章杉无比膨胀的时候,系统泼冷水了:

“宿主在投稿0级论文的时候拥有100%的通过率,宿主在投稿1级论文的时候目前通过率为99%~”

“宿主投稿论文等级为n级别时,通过率相较0级每提高n级,将下降n2%的通过率~”

章杉:。。。

得,白激动半天~

按照系统这个说法,将来投稿9级论文的时候只有19%的通过率了。

不过话说回来,目前系统里面1级论文就是发在NATURE的节奏了。

9级论文将来发在哪里?

现在说来,投稿nature的话自然不是100%的过通过率了。

而是99%的过稿率~

虽然这听起来很靠谱~

但章杉是一贯脸黑,99.99中奖率都有翻车的时候~

现在具体会是什么结果,哪里又能说得好呢~

对于投稿nature的那篇,章杉全然没兴趣了,反而是对那两个0级论文章杉兴趣更浓一些~

虽然这两篇论文依旧是人类佼佼者才能企及的高度。

但以章杉的智慧他很快就搞清楚论文《FurtherapplicationoftheGenerativeAdversarialNetworks》交代的来龙去脉:

深度学习训练一个模型需要很多的人工标注的数据。

在图象识别里面,经常可能需要上百万的人工标注的数据,在语音识别里面,可能需要成千上万小时的人工标注的数据,机器翻译更是需要数千万的双语句对做训练,这些都是大数据的体现。

但是,很多时候找专家来标注数据是非常昂贵的,并且对一些应用而言,很难找到大规模的标注的数据,例如一些疑难杂症,或者是一些比较稀有的应用场景。

而标注数据的代价是极高的。

比如说对机器翻译而言,现在如果请人工来翻译,一个单词的费用差不多是5—10美分之间,一个句子平均长度差不多是30个单词,如果章杉需要标注一千万个双语句对,也就是章杉需要找专家翻译一千万句话,这个标注的费用差不多是2200万美元。

数据标注的费用是非常非常高的,让一个创业公司或者一些刚刚涉足人工智能的公司拿这么大一笔资金来标注数据是很难或者是不太可行的。

因此当前深度学习的一个前沿就是如何从无标注的数据里面进行学习。

而章杉这篇文章里描述的生成式对抗网络就是起到这样的作用。

生成式对抗网络的主要目的是学到一个生成模型,这样生成式对抗网络可以生成很多图像,这种图像看起来就像真实的自然图像一样。

生成式对抗网络解决这个问题的思路跟以前的方法不太一样,生成式对抗网络是同时学习两个神经网络:一个神经网络生成图像,另外一个神经网络给图像进行分类,区分真实的图像和生成的图像。

在生成式对抗网络里面,第一个神经网络也就是生成式神经网络,生成式对抗网络的目的是希望生成的图像非常像自然界的真实图像,这样的话,那后面的第二个网络,也就是那个分类器没办法区分真实世界的图像和生成的图像;而第二个神经网络,也就是分类器,生成式对抗网络的目的是希望能够正确的把生成的图像也就是假的图像和真实的自然界图像能够区分开。

这两个神经网络的目的其实是不一样的,他们一起进行训练,就可以得到一个很好的生成式神经网络。

生成式对抗网络最初提出的时候,主要是对于图像的生成。

章杉论文里提出来的显然是将该方法应用到各个不同的问题上。

不过论文的着重点还是章杉针对如何从无标注的数据进行学习!

在文中他提出了一个新思路,叫做对偶学习。

对偶学习的思路和前面生成式对抗学习会非常不一样。

章杉发现很多人工智能的任务在结构上有对偶属性。

在机器翻译里面,章杉把中文翻译成英文,这是一个任务,但是章杉同样也需要把英文翻译成中文,这是一个对偶的任务。

这种原任务和对偶任务之间,他们的输入和输出正好是反着来的。

原本章杉还因为论文是系统弄得而心存愧疚,但现在看来这论文完全是照着他的思路去写的。

因为之前对多门语言的卓越性。

章杉自己本人来写这个论文的话,最可能想到的涉及对偶属性的应用也是翻译工作。

不过对偶工作不止于此。

在语音处理里面,语音识别是把语音转化成文字,语音合成是把文字转化成语音,也是互为对偶的两个任务。

本章未完,点击下一页继续阅读。

人气小说推荐More+

皇家儿媳妇
皇家儿媳妇
前世,她和他只是一段孽缘。而今生,又会如何?主角:凤鸾,萧铎配角:萧湛,王诩其它:宫斗,狗血
薄慕颜
超级学生
超级学生
源自于百度贴吧热帖“我把那东西偷偷弄进营养快线,女同学一口喝下,没想到……”命运在我的面前分开成两边,一边满载着朝阳金色的光华,我一如既往的平凡,每日平静而又平庸的度过,渐渐佝偻的身影在风中摇摆,无声息的融入拥挤的人潮;另一边铺满了落日暗淡的余晖,伴随着皮肉撕裂的声音,从敌人的胸膛拔出那鲜艳的匕首,跨过一个个倒下的尸骨,眼前恍然浮现出一片血色的浪漫。一部可歌可泣的草根崛起史,一段难以磨灭的青春记忆
梧桐
你的世界里樱花飘落
你的世界里樱花飘落
遗忘,是为了再次记取。错过,是希望还有机会相遇。那些拥有失去,陨落与升起,像是层层叠叠于星空之上绵延。知道吗?樱花飘落的时间…是每秒钟五厘米,所以我该用多久的时间,才能让始终重视事业的你能够转过头来,只为了多看我一眼?(群:74671917...
与田羊肉串
特种兵之血刃传说
特种兵之血刃传说
兵之刃,必染血!杨成,一个普通少年,为寻父从军,以不屈之志,铸不朽传奇!新兵营中,勇夺桂冠;军演场上,绝境逆转;猎人学校,浴血奋战;兵王大赛,谁人可拦?他的心中,有一个信念:军人尊严,不容亵渎!犯我中华者,虽远必诛!
三棱军刺
修仙:女主她天生魔种,有亿点强
修仙:女主她天生魔种,有亿点强
别人穿书是重生逆袭。尽欢穿书就是作死傻缺!是天生魔种!十六岁成魔就自鲨?尽欢:作者这河里吗?!脑残作者表示,这恒河里。于是尽欢一身男装,一心作死,纵横一世只为死无全尸!***曾掀起修仙界腥风血雨的尽欢,三年死而复活回来竟然成了一个……脑残!?尽欢:我都穿女装了,我承认了,我是真女人,还都特么认为我有大病。我见诸君有大病,诸君见我瞥白眼!
一只白菜